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Summary

Many plants interact with carnivores as an indirect defence against herbivores. The
release of volatile organic compounds (VOCs) and the secretion of extrafloral nectar
(EFN) are induced by insect feeding, a response that is mediated by the plant
hormone, jasmonic acid. Although VOCs mainly attract predatory mites and para-
sitic wasps, while EFN mainly attracts ants, many more animal–plant interactions are
influenced by these two traits. Other traits involved in defensive tritrophic inter-
actions are cellular food bodies and domatia, which serve the nutrition and housing of
predators. They are not known to respond to herbivory, while food body production
can be induced by the presence of the mutualists. Interactions among the different
defensive traits, and between them and other biotic and abiotic factors exist on the
genetic, physiological, and ecological levels, but so far remain understudied. Indirect
defences are increasingly being discussed as an environmentally-friendly crop pro-
tection strategy, but much more knowledge on their fitness effects under certain
environmental conditions is required before we can understand their ecological and
evolutionary relevance, and before tritrophic interactions can serve as a reliable tool
in agronomy.
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I. Introduction

Some of the most central functions enabling plant survival
and reproduction depend on mutualisms. Plants cooperate
with animals for pollination and dispersal, and the majority of
plants rely on mycorrhizal fungi for the uptake of mineral
nutrients. Similarly, many species of higher plants interact
with animals of the third trophic level, the carnivores, in order
to gain protection from the second trophic level, that is, the
herbivores and pathogens.

‘Indirect defence’ is generally used when plants attract, nourish
or house other organisms to reduce enemy pressure. This term
was apparently introduced into the literature only some 20 yr
ago (Dicke & Sabelis, 1988), but the phenomenon has been
under investigation for more than three centuries, as myrme-
cophytes – plants engaged in obligate mutualisms with ants –
were described by some of the earliest European ecologists
who worked in the New World (Cobo, 1653; Belt, 1874;
Wheeler, 1942). The defensive effect of ants is so conspicuous
that there is a long history of using these animals as biocontrol
agents. In China, artificial ants’ nests have been used for centuries
in Citrus plantations, and people in various tropical countries
traditionally bring ants’ nests to cacao and other plantations
(Philpott & Foster, 2005; Rico-Gray & Oliveira, 2007).

Ants are, however, not the only group of animals that are
engaged in protective interactions with plants. In fact, tritrophic
interactions among plants, herbivores and carnivores can gener-
ally be influenced by plants as a strategy of defence (Price et al.,
1980). Traits expressed in this context are volatile organic
compounds (VOCs), extrafloral nectar (EFN), food bodies
(FBs), and structures used as refuges or nesting space (domatia;
see Fig. 1). Hence, plants may provide information, food or
housing to obtain the protective service (Bronstein et al., 2006)
from putatively mutualistic carnivores. Many VOCs are induced
in response to herbivory and thus represent an active ‘cry for
help’, as does EFN (see Section III. 2).

Several comprehensive overviews have been published on
induced plant resistance (Karban & Baldwin, 1997; Agrawal
et al., 1999; Tollrian & Harvell, 1999). However, the field
lacks communication among disciplines, as VOCs, in parti-
cular, have been investigated independently of ant–plant
interactions. Although interactions among the different traits
are likely, they are usually treated separately (but see Turlings
& Wäckers, 2004), and empirical studies on more than one
indirect defence trait have mainly concentrated on myrmeco-
phytes (Heil & McKey, 2003).

This review gives an overview on the ecology of indirect
defence. Using the book chapter by Turlings & Wäckers

Fig. 1 Anatomical traits that serve indirect defence via tritrophic interactions. Obligate myrmecophytes house and nourish symbiotic ant colonies 
that function as obligate indirect defence mechanisms, but plants may also provide defenders such as ants and mites with mere nesting space. 
(a) Young leaf of Acacia collinsii with food bodies on the leaflet tips, extrafloral nectaries on the rachis and swollen stipular thorns. (b) 
Pseudomyrmex ferrugineus carrying food body. (c) Pseudomyrmex peperi workers consuming extrafloral nectar of Acacia collinsii. (d) Food 
bodies produced under a recurved stipule of Macaranga bancana. (e) Crematogaster ants collecting food bodies on the surface of Macaranga 
hosei stipule. (f) Pseudomyrmex ant leaving domatium in hollow thorn of Acacia hindsii. (g) Crematogaster ants and scale insects in caulinary 
domatium of Macaranga bancana. (h, i) SEM and light microscopy pictures of mite domatia of cotton. (j) Predatory mites in cotton domatium. 
(© M. Heil (a–g); © Andrew Norton, Colorado State University (h); © Joe Ogrodnick, Cornell University (i, j)).
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(2004) as a starting point, I will particularly highlight the
functional and physiological parallels among the different
defensive means. Future studies should consider all defensive
traits of a plant, for example by simultaneously investigating
both direct and indirect defences, or by making use of those
species that exhibit more than an indirect defence trait
(Arimura et al., 2005). Only this strategy will allow an under-
standing of the interactions among different types of defence,
and of their manifold interactions with plant metabolism and
with the environment.

II. Facultative indirect defences

1. Biology of facultative indirect defences

The number of volatile compounds that are released from plant
flowers, vegetative parts or roots, exceeds 1000 (Dudareva
et al., 2006; Pichersky et al., 2006). While flower scents are
usually released in an ontogenetically programmed way, the
quantity and quality of VOCs that are released from vegetative
plant parts and roots can change dramatically when plants are
damaged (Turlings et al., 1995; Tumlinson et al., 1999; Farmer,
2001). Carnivorous mites were observed to use volatiles released
from spider mite-infested lima bean (Phaseolus lunatus) plants
to localize their prey (Dicke, 1986). After this initial observation,
the idea that herbivore-induced VOCs function as an indirect
defence was rapidly confirmed (Dicke & Sabelis, 1988; Dicke
et al., 1990; Turlings et al., 1990). It is now widely accepted
that VOCs can attract predatory arthropods and/or repel
herbivores and thus serve as a means of plant resistance (Dicke,
1999; Tumlinson et al., 1999; Dicke et al., 2003b; Turlings &
Wäckers, 2004; Arimura et al., 2005) (Fig. 2). However,
other functions of VOCs are still being discovered and range
from direct roles in protection from microorganisms (Peñuelas
& Llusiá, 2004; Kishimoto et al., 2005; Shiojiri et al., 2006)
or abiotic stress (Loreto & Velikova, 2001; Velikova et al.,
2005; Dudareva et al., 2006; Behnke et al., 2007) to functions
as plant ‘pheromones’ (compounds serving in communication
among plants; Baldwin & Schultz, 1983; Rhoades, 1983;
Dolch & Tscharntke, 2000; Karban et al., 2000), or as plant
‘hormones’ (compounds serving in within-plant signalling;
Karban et al., 2006; Frost et al., 2007; Heil & Silva Bueno,
2007). Owing to their direct, physiological functions, it has
even been suggested that the role of VOCs in tritrophic
interactions results from carnivores making use of their
unavoidable loss from plants, rather than representing their
evolutionary reason of being (Peñuelas & Llusiá, 2004).

Extrafloral nectar is functionally not involved in pollination.
Extrafloral nectar secretion has been observed on the shoots,
the leaves (Fig. 1c) and the inflorescences of plants belonging
to more than 300 genera (Elias, 1983; Koptur, 1992). Since
these comprise angiosperms, gymnosperms and even ferns,
EFN appears evolutionarily more ancient than floral nectar
(Heil, 2007). As for VOCs, a ‘physiological theory’ (extrafloral

nectaries serving in secreting excess carbohydrates) originally
competed with an ecological explanation, and some authors
regarded the defensive idea as successfully rejected (Schremmer,
1969). An ever-increasing number of studies, however, have
since demonstrated convincingly that the attraction of predators
to EFN can reduce herbivory rates in nature (reviewed in Bentley,
1977; Koptur, 1992; Heil & McKey, 2003; Rico-Gray &
Oliveira, 2007), and there is now general agreement that extra-
floral nectaries serve ecological interactions. There are still alterna-
tive interpretations in the case of EFN, however, as some
authors suggested a function in the distraction of ants from
flowers (Wagner & Kay, 2002).

Anatomical structures for which the role in indirect defence
was suggested very early are FBs, cellular structures containing
mainly carbohydrates, proteins and lipids (O’Dowd, 1982;
Webber et al., 2007). Charles Darwin (Darwin, 1877) was
apparently the first person to use the term ‘food bodies’, which
he applied to small structures at the leaflet tips of Central
American Acacia shrubs (Fig. 1a) and on hairy pads located at
the leaf bases of Cecropia peltata. Food bodies serve as food for
ants (Fig. 1b) engaged in both facultative and obligate mutu-
alisms (O’Dowd, 1982; Heil & McKey, 2003; Webber et al.,
2007). However, in spite of their wide taxonomic distribution
(O’Dowd, 1982), little scientific effort has ever been spent on
FBs other than those produced by obligate myrmecophytes.

Plants can increase predator densities also by offering phys-
ical structures that serve as nesting or refuge sites. The most
prominent example are ant domatia (Fig. 1g), hollow struc-
tures inhabited by ants that are engaged in facultative or obli-
gate ant–plant mutualisms (see Section IV. 1). Other domatia
types may also house smaller predators such as mites and bugs
(Fig. 1h–j). These domatia are generally localized on leaves
(O’Dowd & Willson, 1991). While ant domatia appear restricted
to the tropics, leaf domatia are also known from temperate
regions (Walter, 1996; Romero & Benson, 2005). Removal of
leaf domatia reduced the abundance of predatory mites on
Viburnum tinus (Grostal & O’Dowd, 1994), and their experi-
mental addition to cotton plants significantly increased numbers
of predatory thrips and bugs and enhanced plant performance
(Agrawal et al., 2000). Defensive effects of mites housed in
leaf domatia have also been demonstrated in nature (Romero
& Benson, 2004), and mycophagous mites housed in such
domatia can even protect plants from fungal infection (English-
Loeb & Norton, 2006; Monks et al., 2007).

2. Animals involved in facultative interactions

On the side of carnivorous animals attracted to VOCs, research
focused mainly on those organisms for which the phenomenon
was first described, that is, predatory mites such as Phytoseiulus
persimilis (Dicke & Sabelis, 1989; Dicke, 1999) and parasitic
wasps such as Cotesia marginiventris (Turlings et al., 1990, 1995;
Turlings & Tumlinson, 1992). Scattered reports exist on the
attraction of predatory nematodes (Rasmann et al., 2005),



Tansley review

New Phytologist (2008) 178: 41–61 www.newphytologist.org © The Author (2007). Journal compilation © New Phytologist (2007)

Review44

flies (Hulcr et al., 2005), bugs (Moayeri et al., 2007; Mochizuki
& Yano, 2007) and thrips (Shimoda et al., 1997), and VOCs
have also been reported to repel herbivores (De Moraes et al.,
2001; Kessler & Baldwin, 2001). Some studies used baits with
certain VOCs to study the species of parasitoids attracted ( James,
2003; James & Price, 2004), but no field studies investigated
the role of VOCs in shaping arthropod communities under
natural conditions (but see Bernasconi Ockroy et al., 2001 for
a study in an agricultural environment).

Volatile organic compounds usually form complex blends
that depend on both the genotype of the plant (Loughrin

et al., 1995; Halitschke et al., 2000; Fritzsche-Hoballah et al.,
2002) and the species and developmental stage of the attack-
ing herbivore (Dicke, 1994, 1999; Takabayashi et al., 1995;
Takabayashi & Dicke, 1996; Ozawa et al., 2000). Carnivores
can discriminate between damaged and undamaged plants,
between plants infested by different herbivore species, and
between different plant species infested by the same herbivore
(Dicke, 1994). Volatile organic compounds thus have the
potential to mediate complex plant–carnivore interactions, which
gives the plant an opportunity for fine-tuning its defence accord-
ing to its actual needs. For example, herbivore-damaged

Fig. 2 Biological effects and interactions of volatile organic compounds (VOCs) and extrafloral nectar (EFN). Feeding by a herbivore (1) elicits the 
octadecanoid cascade (Fig. 3) that leads to the synthesis of jasmonic acid (JA) (2), which induces the release of VOCs and of EFN (3) from both 
the damaged and intact leaves. Several VOCs, such as Z-3-hexenyl acetate (4), induce indirect defences (EFN, VOCs etc.) in as-yet-undamaged 
leaves of the attacked plant. The VOCs then attract parasitic wasps (5) that parasitize herbivorous caterpillars (6) or beetles, and they attract 
predatory mites (7) that feed on smaller herbivores such as spider mites. Both wasps and mites also feed on EFN, as do ants (8), and both ants 
and mites may be also housed in domatia (Fig. 1). For the response of both con- and heterospecific herbivores, attraction by VOCs (9) as well as 
repellent effects (10) have been reported. Volatile organic compounds can also be perceived by other plants belonging to the same or a different 
species (11), which may be primed or directly induced depending on the concentration of VOCs in the headspace. These interactions do not stop 
above ground, since feeding on leaves can result in the transport of a systemic signal to roots where it elicits the synthesis of defensive compounds, 
such as nicotine, while feeding on roots by, for example, beetle larvae (12) can induce the release of VOCs, such as (E)-β-Caryophyllene, 
from roots (13) and also elicit a systemic signal leading to the induced production of EFN or release of VOCs from above-ground parts (14). 
© C. Kost, Lima bean nectaries (3); © M. Heil, (6). MeSA, Methyl salicylate; TMTT, 4,8,12,-Trimethyl-1,3,7,11,-tridecatetraene.



Tansley review

© The Author (2007). Journal compilation © New Phytologist (2007) www.newphytologist.org New Phytologist (2008) 178: 41–61

Review 45

tobacco plants release different volatile blends during the day
and night, to attract parasitoids during the day or repel specific
herbivores during the night (De Moraes et al., 2001), and
they can also suppress the induction of nicotine in favour of
the release of VOCs when attacked by a nicotine-insensitive,
specialized herbivore (Kahl et al., 2000). Although positive
effects of herbivore parasitation on plant fitness are likely (van
Loon et al., 2000), it is strongly dependent on both the type
of attacking herbivore and the ecological and developmental
situation of the plant whether it is better for the plant to
attract parasitoids or predators of the feeding herbivore, pre-
dators or parasitoids of herbivore eggs, or to directly repel the
herbivores.

Research on EFN consumers has, in general, focused on
ants (Bentley, 1977; Heil & McKey, 2003), that is, the quan-
titatively dominating group of predators in the world. Owing
to their effective foraging and recruiting strategies, ants rapidly
find and monopolize attractive food sources, and they defend
these food sources against putative competitors, including
herbivores. Increased ant numbers also inevitably mean an
increased predation pressure on herbivores. However, other
arthropods belonging to the Araneae, Coleoptera, Dermaptera,
Diptera, Hemiptera, Lepidoptera and Orthoptera visit extra-
floral nectaries (Koptur, 1992). Some visitors, such as mosquitoes
(Foster, 1995) and flies (Heil et al., 2004c), consume EFN,
but, because of their life history, are less likely to protect
plants, while other nonant EFN consumers may also act as
defenders, as has been described for predatory mites and lady-
bird beetles (Pemberton, 1993; Pemberton & Vandenberg,
1993; van Rijn & Tanigoshi, 1999), ichneumonid and braco-
nid wasps (Bugg et al., 1989; Stapel et al., 1997; Cuautle &
Rico-Gray, 2003), lacewing larvae (Limburg & Rosenheim,
2001) and spiders (Ruhren & Handel, 1999; Whitney, 2004).
However, while several studies investigated effects of EFN-
bearing plants on the ant community (Bentley, 1976; Blüthgen
et al., 2000; Díaz-Castelazo et al., 2004; Oliveira & Freitas,
2004; Kost & Heil, 2005), similar work on nonant arthro-
pods is scarce (but see Kost & Heil, 2005).

3. Chemical ecology of facultative indirect defences

Compounds that dominate the headspaces of herbivore-
damaged plants are alcohols, esters, aldehydes and various
terpenoids (Dudareva et al., 2006; Pichersky et al., 2006).
Some substances are immediately released after damage, cause
the characteristic odour of freshly mowed pastures, and are
therefore called green-leaf volatiles (GLVs). The majority of
these substances are isomers of hexenol, hexenal or hexenyl
acetate. Some preformed GLVs ‘bleed’ instantaneously from
disrupted tissue (Turlings & Wäckers, 2004), but the rest of
these compounds are released rapidly upon damage, since the
first intermediate of the octadecanoid cascade, 13-hydroperoxy-
linolenic acid, also acts as an intermediate for the synthesis of
6-carbon volatiles (Walling, 2000; Gatehouse, 2002) (Fig. 3).

In contrast, the release of esters such as methyl salicylate and
methyl jasmonate, of monoterpenes such as limonene, linalool
or ocimene, and of sesquiterpenes such as bergamotene,
caryophyllene and farnesene, typically starts 24 h after attack
(Paré & Tumlinson, 1997b; Turlings et al., 1998; Dudareva
et al., 2006; Pichersky et al., 2006).

The synthesis of these compounds is induced by leaf chewers
such as beetles, plant hoppers and caterpillars (Dicke, 1999;
Williams et al., 2005) and also in response to feeding by spider
mites, herbivorous bugs, aphids and whitefly (Dicke, 1999;
Walling, 2000; Colazza et al., 2004b; Moraes et al., 2005;
Williams et al., 2005). The type of feeding damage clearly
affects the VOCs produced, and a part of the biochemical
explanation is that leaf chewers in general induce only jasmonic
acid ( JA) signalling (Fig. 3), while piercing-sucking herbivores
(phloem feeders and single-cell feeders) tend to induce salicylic
acid-mediated resistance pathways as well (Walling, 2000;
Leitner et al., 2005; Smith & Boyko, 2007). Even mere ovi-
position on plant surfaces can be enough to affect release of
VOCs (Meiners & Hilker, 2000; Hilker & Meiners, 2006)
and then usually serves the attraction of egg parasitoids
(Meiners & Hilker, 2000; Colazza et al., 2004a).

Using VOCs as the only source of information, carnivores
can discriminate among plants infested by different herbivore
species (e.g. hosts and nonhosts) and among different plants
infested by the same herbivore (Dicke, 1994, 1999; Du et al.,
1996; De Moraes et al., 1998; Powell et al., 1998). Volatile
blends even vary in response to damage by different instars of
the same species (Takabayashi et al., 1995). However, this high
specificity is not reflected in the level of the single substances,
as surprisingly few compounds are reported as herbivore-
induced VOCs, most being released from many different
plant species (Dudareva et al., 2006; Pichersky et al., 2006).
Plants naturally grow in mixed stands, and carnivores must be
able to distinguish their blends from the general background,
an aspect overlooked in almost all laboratory studies (Dicke
et al., 2003a). In an apparent contrast to the above findings, other
studies reported that naturally occurring carnivores responded
to isolated compounds (Kessler & Baldwin, 2001; James,
2003; James & Price, 2004; Rasmann et al., 2005). The general
pattern appears to be that biochemical investigations find
highly characteristic blends with respect to the genotype and
developmental stage of both plants and herbivores, and that
carnivores are able to distinguish among such blends under
laboratory conditions or in simplified agronomic ecosystems,
while single VOCs already have a generally attractive function
in the complex, natural environment.

To complicate the picture, the majority of herbivore-induced
VOCs are also released from flowers (Dicke et al., 1990; Dudareva
et al., 2006; Pichersky et al., 2006). In short, the current picture
demonstrates a high functional diversity in VOC-mediated
communication within and among organisms, but it leaves us
with the open question of how misunderstandings in all these
communications are avoided (Heil, 2007). How do pollinators
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avoid being attracted by the ‘flowerish’ odour released from
damaged leaves of plants, and how do carnivores searching for
herbivores avoid being attracted to flowers? All these ques-
tions remain to be studied.

Just as with floral scents and herbivore-induced volatiles,
floral and extrafloral nectars may also consist of similar or
identical compounds, although their detailed blends can be
quite different (Baker et al., 1978; Koptur, 1994). Extrafloral
nectar contains mainly mono- and disaccharides (fructose,
glucose and sucrose) and free amino acids dissolved in water
(Koptur, 1994), but scattered reports exist as to the presence
of fatty acids and phospholipids (Stone et al., 1985). Water
per se can be an important resource (Ruffner & Clark, 1986),
but most consumers prefer EFN rich in sugars and amino
acids (Baker et al., 1978; Ruffner & Clark, 1986; Smith et al.,
1990; Lanza, 1991; Koptur, 1994). Several nonprotein amino
acids have been discovered in EFN (Inouye & Inouye, 1980)

and have been discussed as a chemical protection from non-
adapted ‘nectar thieves’. Even the detailed identity of carbo-
hydrates can be functionally important. As an example, EFN
of Acacia myrmecophytes has invertase activity to keep it free
of sucrose, a disaccharide being generally attractive to hymen-
opterans. This EFN is thus unattractive to nonsymbiotic ants
that might compete with the plants’ obligate Pseudomyrmex
ant partners. The ant inhabitants of these plants, in turn, lack
invertase activity in their digestive tracts and thus depend on
the ‘predigested’ EFN of their hosts (Heil et al., 2005).

Other proteins in EFN apparently serve the protection
from microbe infection (M. F. Gonzales-Teuber & M. Heil,
unpublished), as has been described for floral nectar of tobacco
(Carter et al., 1999, 2007; Carter & Thornburg, 2004). From
behavioural studies it is now clear that EFN releases odours
that facilitate the orientation of carnivores (Röse et al., 2006).
These odours, however, remain to be chemically characterized,

Fig. 3 Role of jasmonic acid (JA) in extrafloral nectar (EFN) induction and the octadecanoid cascade. Extrafloral nectaries on the leaf blade of 
Macaranga tanarius plants are visited by ants. Extrafloral nectar secretion responds positively to mechanical damage, herbivory and exogenous 
application of an aqueous 1 mM solution of JA, yet not to the application of mere water. The involvement of endogenous JA, whose content 
increases transiently to up to 120 ng g−1 fresh weight in response to damage, was confirmed by the observation that application of phenidone 
(an inhibitor of lipoxygenase) inhibited the induction of EFN secretion after damage, which could be readily restored when JA was applied 
additionally to the phenidone treatment. Therefore, the octadecanoid cascade (starting with the release of linolenic acid from biomembranes 
and leading via several enzymatic steps to the synthesis of JA) is causally involved in the induction of EFN secretion by herbivory or mechanical 
damage. Bar diagrams and panel on endogenous JA in response to damage at t = 0 redrawn from Heil et al. (2001b), information on the 
octadecanoid cascade following Creelman & Mullet (1997a) and Gatehouse (2002). GLVs, green-leaf volatiles; 12-OPDA, 12-oxo-phytodienoic 
acid.
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and even floral nectar odours have only recently been investi-
gated (Kessler & Baldwin, 2007). In short, the detailed com-
position of EFN plays a crucial role in its ecological functions,
but new substance classes are still being discovered and remain
to be chemically and functionally characterized.

4. Evidence for plant–carnivore mutualism

Plant–carnivore interactions that are mediated via EFN or
VOCs are generally assumed to be mutualisms. However,
positive net effects on plant fitness rather than just reduced
herbivory need to be demonstrated before a plant trait can be
termed a ‘defence’ (Karban & Baldwin, 1997), and positive
fitness effects on the attracted arthropods must additionally
be demonstrated before these interactions can be termed
‘mutualisms’ between the first and third trophic levels. How
good is the evidence for EFN and VOCs?

Higher parasitation rates of herbivores have been observed
in nectary-bearing than in nectary-free trees (Pemberton &
Lee, 1996; Mathews et al., 2007), and when sugars were
applied as an EFN mimic ( Jacob & Evans, 1998), but it is not
known how this feeds back to plant fitness. By contrast, hun-
dreds of studies have excluded ants from EFN-producing
plants and found higher rates of herbivory in ant-free than in
ant-tended plants (Bentley, 1977; Koptur, 1992; Heil &
McKey, 2003). The drawback of this attempt is that it also
excludes crawling herbivores (Freitas et al., 2000; Kost &
Heil, 2005). Some researchers applied chemical elicitors or
herbivores to induce EFN secretion and reported defensive
effects of the attracted ants (Heil et al., 2001b; Ness, 2003), a
result that may, however, be influenced by other defensive
plant traits also responding to the inducing agent. The most
straightforward approach is the experimental application of
EFN. While Tempel (1983) did not find a protective effect of
sugars externally applied to bracken fern, other studies did
indeed find that ants attracted to experimentally applied sug-
ars can significantly reduce herbivory rates (Bentley, 1976;
Kost & Heil, 2005).

The outcome of such mutualisms depends on abiotic con-
ditions, identity of the visiting predators, and the type and
amounts of herbivores present. Several studies therefore failed
to find a clear defensive effect of ants attracted to EFN
(O’Dowd & Catchpole, 1983; Tempel, 1983; Rashbrook
et al., 1992; Freitas et al., 2000), and even a higher protection
by ants and a resulting higher initial fruit set does not neces-
sarily translate to a higher fitness, when factors such as soil
nutrients limit fruit production (Oliveira, 1997). However, in
spite of these environment-driven uncertainties, many studies
found positive effects of ant attraction to EFN on fitness-
relevant plant traits (Bentley, 1977; Horvitz & Schemske,
1984; delClaro et al., 1996; Oliveira et al., 1999; Sobrinho
et al., 2002; Kost & Heil, 2005).

Much less is known about the importance of EFN for the
consumers. As pointed out by Turlings & Wäckers (2004),

‘extrafloral nectar by itself falls short from providing a well-
balanced diet’. Behaviour and survival of adult parasitoids
are energy-limited, and access to carbohydrate sources thus
usually has a positive effect on their survival rates, the time
they stay on a particular plant, and even on parasitation
rates (Stapel et al., 1997; Jacob & Evans, 1998; van Rijn &
Tanigoshi, 1999; Gnanvossou et al., 2005; Röse et al., 2006;
Olson & Wäckers, 2007). However, how important is EFN
for ants? Several studies tried to address this question and
found that EFN makes up a relevant part of the visiting ants’
diet (Hölldobler & Wilson, 1990). As ant workers usually
feed on carbohydrates while providing proteins and lipids to
their larvae, a carbohydrate-biased food source such as EFN
might even improve their activity and competitiveness (Davidson,
1997) and thus, indirectly, their need for proteins. Plants can
obviously turn ants into even better predators by providing
them with carbohydrates. However, no study has convinc-
ingly shown a fitness benefit of EFN for ants in facultative
interactions (Bronstein, 1998).

Similarly, the character of VOC-mediated tritrophic interac-
tions is not entirely clear. In this case, the benefit for the animal
side is obvious, since many parasitoids and predators rely partly,
or even completely, on plant-derived traits to localize their
prey or host species (Vet & Dicke, 1992; Turlings & Wäckers,
2004), and since increased parasitation or predation rates directly
affect the carnivore fitness. Specialists, in particular, often use
very specific compounds released from the hosts of their hosts
(Steidle & van Loon, 2003). In this case, the uncertainties remain
with the plant. While laboratory studies indeed reported that
feeding by parasitized caterpillars reduced Arabidopsis fitness
to a lesser extent than feeding by unparasitized caterpillars
(van Loon et al., 2000), it is only during recent years that
investigations have been conducted under realistic condi-
tions. Planting an odorous grass into maize fields reduced
herbivore damage. This grass, Melinitis minutiflora, constitu-
tively emits a compound that is typically released by maize in
response to caterpillar damage and that attracted parasitoids
(Khan et al., 1997). Field trials demonstrated that the special-
ist parasitic wasp Cardiochiles nigriceps used plant odours to
localize plants infested by its host, Heliothis virescens (De
Moraes et al., 1998). Thaler (1999) found that caterpillars
suffered higher parasitation rates when caged near tomato
plants that were induced with JA to release VOCs, and more
parasitic wasps were trapped near induced maize plants in a
corn field (Bernasconi Ockroy et al., 2001). Artificially
applied (Z)-3-hexene-1-ol, Linalool, and (Z)-α-bergamotene
increased predation rates of Manduca sexta eggs on Nicotiana
attenuata plants (Kessler & Baldwin, 2001); methyl salicylate
increased populations of predators and decreased populations
of spider mites in grape vineyards and hop yards ( James, 2003;
James & Price, 2004); and (E)-β-caryophyllene released from
corn plant roots in response to beetle damage was attractive to
entomopathogenic nematodes (Rasmann et al., 2005). Predators
were also attracted to beetle-damaged bananas under field
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conditions (Tinzaara et al., 2005), and lima bean plants treated
repeatedly with JA in nature released more VOCs and suffered
less herbivory than controls, and they produced more leaves,
flowers and fruits (Heil, 2004).

Lima bean, however, responds to JA with the induction of
both VOCs and EFN (Heil, 2004). The latter study thus
failed to nail down the observed defence effects to the VOCs.
Net effects on plant fitness were not investigated by Kessler &
Baldwin (2001), James (2003) or Rasmann et al. (2005), and
the reduced herbivory in the intercropping experiment of
Khan et al. (1997) could also have been caused by a repellent
effect on the major maize pest rather than by an attraction of
its parasitoids. As described for EFN, many factors can affect
the outcome of a VOC-mediated tritrophic interaction. The
previous experience of carnivores affects their behaviour
towards particular VOCs (Turlings et al., 1990; Petitt et al.,
1992; Krips et al., 2001; De Boer et al., 2005). Although
VOC-mediated parasitation of herbivores can increase the
fitness of the plants on which the herbivores feed (van Loon
et al., 2000; Fritzsche Hoballah & Turlings, 2001a), this does
not represent a necessary outcome of the interaction, which
for instance depends on the intensity of the parasitation and
on the competition of herbivores for suitable hosts. Finally,
the various herbivore or carnivore species present, with differ-
ent responses to VOCs, may show complex interactions under
natural conditions. For example, a parasitic wasp and an ento-
mopathogenic nematode are both attracted to maize plants
damaged by their respective host, but this attraction can be
significantly reduced when both herbivores simultaneously
feed on a plant (Rasmann & Turlings, 2007). Demonstrations
of a VOC-mediated predation pressure on single herbivores
(De Moraes et al., 1998; Thaler, 1999; Kessler & Baldwin,
2001) are thus not sufficient to prove the defensive function
of VOCs, and whether or not their role in tritrophic inter-
actions represents a driving evolutionary force for the plants
remains to be demonstrated.

Generalizations on the defensive role of EFN or VOCs are
further complicated when the putative defenders exclude
other predators (Mody & Linsenmair, 2004) or when these
traits interact directly with the herbivores. Herbivore-induced
VOCs can repel herbivores and then serve as direct rather than
indirect defences (Dicke & Dijkman, 1992; Birkett et al.,
2000; De Moraes et al., 2001; Kessler & Baldwin, 2001; Dug-
ravot & Thibout, 2006). Less welcome for the plant is the
attractive effect of cotton EFN on herbivorous moths (Beach
et al., 1985). VOCs, in particular, may simply signal the pres-
ence of a host plant and thus attract rather than repel search-
ing herbivores, thereby forming a double-edged sword in
plant defence (Loughrin et al., 1996; Bolter et al., 1997;
Dicke, 1999; Kalberer et al., 2001; Horiuchi et al., 2003; Car-
roll et al., 2006).

In summary, a positive effect on plant fitness has been shown
repeatedly for ants attracted to EFN but never convincingly so for
VOC-mediated interactions, while good evidence for positive

effects on the attracted carnivores’ fitness exists for parasitoids
attracted to EFN or VOCs, yet not for the ant–EFN interaction.
Research to date has left us with two ‘half-supported mutualisms’.

5. When and where should plants exhibit indirect 
defence?

Plants should be under an evolutionary pressure to optimize
their defensive investments according to abiotic growing con-
ditions, herbivore pressure and the value of the defended
organ. The optimal defence hypothesis (ODH; McKey, 1974,
1979; Rhoades, 1979) assumes herbivore pressure and fitness
consequences of herbivory to constitute important evolutionary
forces that vary among plant organs. Defensive needs are
determined by an organ’s value, the cost to the plant of its
herbivore-inflicted damage or loss, and its vulnerability, the
probability that the organ would be successfully attacked by
herbivores in the absence of the defensive trait. In contrast, the
resource availability hypothesis (RAH; Bryant et al., 1985;
Coley et al., 1985) states that the optimal level of defence cor-
relates negatively with the potential growth rate, since replace-
ment of plant parts lost to herbivores is more costly when
nutrients are limiting future growth, the relative impact of
herbivory increases with decreasing inherent growth rate, and
a percentage reduction in growth rate as a result of the cost
of producing defences represents a greater absolute growth
reduction for fast-growing species than for slow-growing species.
Herms & Mattson (1992) pointed to the physiological trade-
off between growth and differentiation processes, the latter
also comprising defence. The growth-differentiation balance
hypothesis (GDBH) assumes that nutrient-rich conditions
favour growth and result in a low relative availability of carbon
for secondary metabolism; inherently fast-growing species
should thus have lower levels of defence than inherently slow-
growing species (as also predicted by RAH). Most essentially,
the described trade-offs restrict the possibilities to defend
young, fast-growing plant parts, and in this respect GDBH
directly contradicts ODH.

Induced defences allow plants to fine-tune their defensive
investments according to the current herbivore pressure; their
existence per se thus confirms the ODH. Even diurnal rhythms
can be adapted to ODH requirements: EFN secretion by
Macaranga tanarius peaks when herbivore activity is highest
(Heil et al., 2000), and VOCs released during the day and
night can differ (Loughrin et al., 1994; Kunert et al., 2002) in
order to elicit specific responses by certain arthropods (Turlings
et al., 1995; De Moraes et al., 2001).

Induced defences are, moreover, generally regarded as cost-
saving strategies, and empirical studies did indeed report low
physiological costs of EFN or VOCs (O’Dowd, 1979; Fritzsche
Hoballah & Turlings, 2001b). However, the production of VOCs
can be limited by both light and soil nutrients (Gouinguené
& Turlings, 2002) and thus is likely to incur considerable
costs, at least under certain growing conditions. Since carnivores
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represent a highly mobile defence (McKey, 1984), RAH and
GDBH predict indirect defences to be particularly common
in fast-growing species. These predictions are clearly confirmed
in the case of obligate ant–plant interactions, which are most
spectacularly evolved in pioneer trees (Heil & McKey, 2003).
How good is the evidence for facultative interactions? Plant
species known to employ VOC-mediated indirect defences
comprise mainly fast-growing annuals from resource-rich
sites, and even trees for which the phenomenon is reported are
fast-growing species from secondary ecosystems (see lists of
species in Dicke, 1999; Turlings & Wäckers, 2004; van den
Boom et al., 2004). However, this observation might be
severely biased because of the general research focus on crop
plants, and a wide screening of plant species is required to test
whether the general distribution of VOCs can be satisfactorily
explained by the RAH and/or the GDBH.

Water stress increased release of VOCs (Vallat et al., 2005),
as did nitrogen deficiency (Schmelz et al., 2003), two observa-
tions that are in line with assumptions of the RAH. However,
other studies reported contrasting results (Gouinguené &
Turlings, 2002), and no generalizations as to the effect of
abiotic factors on indirect defences can be drawn thus far.
More is known about ontogenetic patterns, as EFN produc-
tion generally depends on the developmental state of the
secreting organ (Tilman, 1978; O’Dowd, 1979; Yokoyama &
Miller, 1989; Heil et al., 2000; Wäckers & Bonifay, 2004)
with patterns fulfilling predictions of the ODH (Bentley,
1977; Heil et al., 2000; Wäckers & Bonifay, 2004). Similarly,
young leaves of Glycine max emitted more volatiles in response
to herbivore feeding than older leaves (Rostás & Eggert, 2007).
However, reproductive structures emitted no constitutive and
very few inducible volatiles in the same study. This seeming
contrast to the ODH might result from VOCs serving as
long-distance signals for parasitoids rather than in host-finding
at the within-plant level (Rostás & Eggert, 2007). ODH
might generally apply more directly to spatial patterns in EFN
secretion than in VOC release, since the distribution of EFN
is more directly linked to its local efficiency. This might also
explain why VOCs are generally induced systemically (Turlings
& Tumlinson, 1992; Dicke, 1994; Paré & Tumlinson, 1999;
Rostás & Eggert, 2007).

Hypotheses that have been formulated in the context of
direct plant defence can help in understanding the within-
and among-plant patterns in indirect defences, but more the-
oretical and empirical studies will be required to elucidate to
what degree direct and indirect defences can be treated within
the same theoretical frameworks.

III. Production of indirect defences

1. General production mechanisms

Volatile organic compounds are biochemically well character-
ized, and many genes and enzymes involved in their synthesis

are known. The majority of VOCs are synthesized de novo
after damage, and their metabolic origin is usually well
defined (Paré & Tumlinson, 1997b; Dudareva et al., 2006;
Pichersky et al., 2006). That selected biosynthetic pathways
are completely known has been elegantly confirmed with
plants that have been genetically engineered to alter their vol-
atile release (Kappers et al., 2005; Schnee et al., 2006; Shiojiri
et al., 2006). However, experimental evidence for the biosyn-
thetic origin of other plant volatiles is still missing (Pichersky
et al., 2006).

The scattered information on the chemical composition of
EFN is mirrored by an even lower number of studies on its
metabolic origin. Without consumers present, EFN secretion
usually drops dramatically (Heil et al., 2000, 2004b), and –
being a herbivore-inducible trait – EFN is generally produced
at very low rates by intact plants. However, the physiological
and genetic mechanisms that underlie these phenomena
remain unknown. Reabsorption has been described for floral
nectar (Búrquez & Corbet, 1991; Stpiczynska, 2003; Nepi
et al., 2007) but was never studied for EFN. Excised floral
nectaries can secrete fructose, glucose and sucrose when only
one of these sugars is provided as a substrate (Frey-Wyssling
et al., 1954). Starch is usually accumulating in secretory tissues
of floral nectaries and is degraded when nectar secretion
begins (Stpiczynsa et al., 2005; Ren et al., 2007; Thornburg,
2007), but I am not aware of another study besides the one
by Heil et al. (2005) that deals with mechanisms regulating
the sugar composition in EFN. Nothing appears to be known
about how amino acids, proteins, alkaloids and volatile com-
pounds are secreted into the EFN. Many extrafloral nectaries
have direct connections to xylem or phloem, or both (Elias,
1983), and the common opinion appears that EFN is directly
derived from the contents of the vascular system. However,
the nectaries’ metabolic capacities (Frey-Wyssling et al., 1954),
the clear chemical differences between phloem sap and
nectar, and the temporal secretion patterns along with its
inducibility, make it clear that EFN production requires active,
and thus far unidentified, synthetic and secretion processes.

2. Induction

Secretion rates or amino acid content of EFN increase in
response to herbivory or mechanical damage (Mound, 1962;
Stephenson, 1982; Koptur, 1989; Smith et al., 1990). The
first study demonstrating an increase in EFN secretion in
response to herbivory (Stephenson, 1982) preceded the first
reports on the role of odours of the damaged plant in the
prey-searching behaviour of carnivores (Dicke, 1986) and
therewith represents the first description of an induced
indirect defence (Table 1). However, it was then shown rapidly
for several species that damage dramatically changes the
quantity and quality of VOCs released from plants (Turlings
et al., 1995; Paré & Tumlinson, 1997b; Tumlinson et al., 1999;
Farmer, 2001). These interactions are not restricted to the
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aerial parts of plants, as roots of Thuja and maize can release
VOCs in response to feeding by beetle larvae (van Tol et al.,
2001; Rasmann et al., 2005). Feeding on roots even can
induce changes in the volatile bouquet released from the aerial
parts of a plant (Bezemer et al., 2003; Soler et al., 2007), although
the ecological relevance of this observation remains elusive.

Less has been done on the induction of EFN secretion. The
Euphorbiacea, Macaranga tanarius, responds to leaf damage
with dramatically increased rates of EFN secretion. Within
hours, this increases the number of ants showing up on the
plant, which in turn reduces herbivore pressure (Heil et al.,
2001b). Experiments based on the exogenous application of
JA and on the application of an inhibitor of endogenous JA
synthesis demonstrated that the transient increase in endo-
genous JA that can be observed after mechanically damaging
Macaranga tanarius plants (Fig. 3) is both required and suffi-
cient to increase EFN secretion locally (Heil et al., 2001b).

Increases in EFN secretion upon herbivory and/or mechanical
damage were also demonstrated for cotton and castor (Wäckers
et al., 2001), the Bignoniaceae Catalpa bignonioides (Ness,

2003), and several species of the Faboideae (Heil, 2004) and
the Mimosoideae (Heil et al., 2004b). Vicia faba responds to
mechanical leaf damage with increased numbers of nectaries
(Mondor & Addicott, 2003), a phenomenon caused by the
production of more nectary-bearing stipules on the growing
shoot (Mondor et al., 2006). The involvement of a long-
distance signal has been demonstrated for cotton, since feed-
ing on roots induced EFN secretion on above-ground parts
(Wäckers & Bezemer, 2003).

Many excellent reviews exist on the signals involved in
defence induction (Creelman & Mullet, 1997a; Wasternack
& Parthier, 1997; Ryan, 2000; Farmer, 2001; Farmer et al.,
2003; Howe, 2004; Schilmiller & Howe, 2005), among these
two Tansley reviews (Bennett & Wallsgrove, 1994; Gate-
house, 2002), and only a short overview is given here. The
plant hormone, JA, plays a crucial role in the induction of
both VOCs (Hopke et al., 1994; Boland et al., 1995) and
EFN (Heil et al., 2001b). What is the perceived signal initiat-
ing the octadecanoid signalling cascade, which terminates in
the synthesis of JA? Eliciting compounds comprise cell wall

Table 1 Keystone publications on indirect defence via tritrophic interactions

Year Finding Reference

1966 Myrmecophytes and their ant inhabitants are engaged in obligate defensive mutualisms Janzen (1966)
1977 Meta-analysis shows that EFN attracts ants as ‘pugnacious bodyguards’ Bentley (1977)
1982 EFN secretion is induced by herbivore feeding Stephenson (1982)
1982 Distance to herbivore-damaged trees affects direct chemical defence of Sitka willow Rhoades (1983)
1983 Herbivore resistance is induced in plants enclosed in the same air as damaged plants Baldwin & Schultz (1983)
1986 Volatiles released from damaged plants facilitate host searching by carnivorous mites Dicke (1986)
1990 Herbivore oral secretion on artificial wound sites induces terpenoid release from maize Turlings et al. (1990)
1990 Methyl jasmonate is an airborne signal that induces neighbouring plants Farmer & Ryan (1990)
1991 Systemin suggested as systemic signal released at wound sites of tomato leaves Pearce et al. (1991)
1992 VOCs are induced systemically, i.e. they are also released from as-yet-undamaged organs Turlings & Tumlinson (1992)
1992 VOCs can repel herbivores Dicke & Dijkman (1992)
1995 VOCs released by plants carry all information required to attract parasitic wasps Turlings et al. (1995)
1995 JA induces the release of VOCs by various plant species Boland et al. (1995)
1997 VOCs are synthesized de novo in response to herbivore attack Paré & Tumlinson (1997a)
1997 Volicitin acts as elicitor in Zea mays responding to caterpillar feeding Alborn et al. (1997)
1998 VOCs attract parasitoidic wasps in nature De Moraes et al. (1998)
1999 Induction of VOC release increases parasitation rates of herbivores in the field Thaler (1999)
2000 Clipping of sagebrush leaves induces defence in neighbouring tobacco plants Karban et al. (2000)
2001 VOCs repel herbivores in nature De Moraes et al. (2001); 

Kessler & Baldwin (2001)
2001 Induction of EFN secretion is mediated by JA and benefits plants in nature Heil et al. (2001b)
2004 VOCs prime resistance traits in neighbouring maize plants Engelberth et al. (2004)
2006 Air flow from damaged to undamaged parts mediates systemic response in sagebrush Karban et al. (2006)
2006 EFN secretion by lima bean is induced and primed by VOCs Choh et al. (2006); Choh & 

Takabayashi (2006); Heil & Kost 
(2006); Kost & Heil (2006)

2007 VOCs mediate within-plant signalling and thus function as volatile plant hormones Frost et al. (2007); 
Heil & Silva Bueno (2007)

VOCs, volatile organic compounds; JA, jasmonic acid; EFN, extrafloral nectar.
The development in research on indirect defensive traits is indicated by presenting a noncomprehensive listing of central publications that relate 
primarily to volatile-mediated tritrophic interactions (in yellow), volatile-mediated plant–plant signalling (in green) and EFN-mediated indirect 
defence (in red) in the temporal order of their publication.
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fragments such as oligosaccharins and pectins (Doares et al.,
1995; Creelman & Mullet, 1997b), compounds such as β-
glucosidase (Hopke et al., 1994; Mattiacci et al., 1995) or
cellulysin (Piel et al., 1997) that cause such fragments to be
formed, or fragments of plant proteins (Schmelz et al., 2006).
In short, many components that are released from a disrupted
plant cell, and that may or may not be processed by insect-
derived factors, are perceived as signals, and mere mechanical
damage can therefore be sufficient to induce the majority of
JA-dependent genes or defence traits, at least when the type of
damage inflicted destroys many cells rather than leading only
to a loss of leaf area (Heil et al., 2001b, 2004b; Mithöfer et al.,
2005; Major & Constabel, 2006). In response to damage, the
octadecanoid cascade (Fig. 3) starts with the release from cell
membranes of the 18C-fatty acid linolenic acid, which is then
converted to 13-hydroperoxylinolenic acid by lipoxygenase. 13-
Hydroperoxylinolenic acid is a substrate for allene oxide synthase
and allene oxide cyclase, which form 12-oxo-phytodienoic acid
(12-OPDA). Following reduction and three steps of beta-
oxidation, JA is formed (Creelman & Mullet, 1997a; Gatehouse,
2002). Jasmonic acid and several intermediates of the octade-
canoid cascade have been identified as inducing different sets
of VOCs (Koch et al., 1999), and different components of the
octadecanoid signalling cascade thus likely interact to deter-
mine the composition of the released volatile blend.

Jasmonic acid does not, however, directly induce gene activity.
The search for its receptor and its mode of action in the regu-
lation of gene expression has only recently seen a significant
breakthrough with the discovery of a family of JAZ (jasmonate
ZIM-domain) proteins (Chini et al., 2007; Thines et al., 2007).
These proteins are repressors of MYC2 and similar transcrip-
tion factors, which are important players in the regulation of
jasmonate-sensitive genes (Boter et al., 2004; Lorenzo et al.,
2004). Their discovery links these transcription factors to the
long-known function of COI1 (coronatin-insensitive 1), an
F-box protein (Xie et al., 1998) forming part of an enzymatic
complex (an E3 ubiquitin ligase) that targets JAZ-proteins for
ubiquitination (Chini et al., 2007). In short, jasmonates (most
likely the JA–amino acid conjugate jasmonoyl–isoleucine;
Staswick & Tiryaki, 2004) bind to the COI1-unit of an E3
ubiquitin ligase complex termed SCFCOI1 (for Skip/Cullin/
Fbox – COI1), thereby stabilizing the COI1–JAZ complex
(Thines et al., 2007). This allows the ubiquitination of JAZ-
proteins and thus their rapid degradation. E3 ligases generally
control the ubiquitination of proteins, and polyubiquitinated
proteins are then recognized and degraded by the 26S pro-
teosome (Devoto & Turner, 2005). Since JAZ-proteins are
repressors of MYC2 and related transcription factors, their
degradation deliberates these transcription factors and thus
allows gene activation (Chini et al., 2007; Farmer, 2007).
Interestingly, JAZ-proteins themselves are MYC2-dependent
and therefore rapidly induced by jasmonates (Chini et al.,
2007), which explains the only transient gene expression in
response to jasmonates, which resembles the transient increase

in JA itself as generally found after wounding or short-term
insect feeding (Fig. 3).

Although mechanical damage can induce the octadecanoid
cascade in many plants, several studies identified specific
elicitors, and hints were obtained on a systemic transport of at
least some of them. For example, a primary wound signal in
tomato was identified as an 18-amino acid peptide termed
systemin. Systemin is released at wound sites by chewing
herbivores (Pearce et al., 1991) and is considered a systemi-
cally transported signal. The polypeptide is processed from a
200-amino acid precursor called prosystemin (Ryan & Pearce,
1998). Systemin is mainly discussed in the context of direct
defences but also induces VOCs (Corrado et al., 2007). Other
elicitors are formed by a conjugation of plant- and herbivore-
derived precursors. For example, the fatty acid–amino acid
conjugate volicitin (N-[17-hydroxylinolenoyl]-L-glutamine)
acts as an elicitor in Zea mays responding to caterpillar feeding
(Alborn et al., 1997) and it was then found that its fatty acid
portion is derived from the plant while the 17-hydroxylation
reaction and the conjugation with glutamine are carried out
in the caterpillar (Paré et al., 1998) by bacteria living in the
caterpillar’s gut (Spiteller et al., 2000). Other plants in which
fatty acid–mino acid conjugates act as elicitors are lima bean
(Koch et al., 1999) and native tobacco (Halitschke et al.,
2001). In general, such elicitors induce the octadecanoid
cascade (Schaller & Ryan, 1995; Alborn et al., 1997; Paré
et al., 1998; Ryan, 2000).

However, volicitin does not induce volatile release from
lima bean (Koch et al., 1999), and systemin was not active in
all species of the Solanaceae (Schmidt & Baldwin, 2006).
Amino acid conjugates of jasmonic acid can act as inter-
mediates in the octadecanoid signalling pathway (Krumm
et al., 1995), JA-Ile is now discussed to interact with COI1
and thereby to directly induce jasmonate-responsive genes
(Staswick & Tiryaki, 2004), and volicitin is an amino acid
conjugate of linolenic acid (i.e. the fatty acid that forms the
starting point of the octadecanoid signalling cascade; see
Fig. 3). In spite of these structural similarities to the putatively
general signals, elicitors such as systemin and volicitin func-
tion in a much more restricted range of species than does JA
itself, which activates direct or indirect defences in many
unrelated plant species.

3. Within-plant and among-plant signalling

Volatiles carry information on the status of attack of a plant,
which can be used by other plants or parts of plants to adjust
their defensive phenotype accordingly. In fact, the first reports
on plant–plant communication date back to the early 1980s
and preceded the first reports on plant–carnivore communication
(Table 1). Rhoades (1983) reported that undamaged Sitka
willow trees growing close to herbivore-infested conspecifics
had a higher chemical defence to fall webworm larvae than
controls from a more distant site. Shortly afterwards, Baldwin
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& Schultz (1983) found that undamaged, potted plants kept
in the same air with damaged plants had increased concentrations
of phenolic compounds. Undamaged cotton seedlings became
more attractive to predatory mites and less attractive to herbivorous
mites when exposed to air from infested conspecific plantlets
(Bruin et al., 1992). Later field studies found that herbivory
rates on alder trees were lower when growing close to damaged
conspecifics (Dolch & Tscharntke, 2000), while others extended
the phenomenon to the interspecies level by reporting that
clipped sagebrush can induce polyphenol oxidase in wild tobacco
plants (Karban et al., 2000). Extrafloral nectar secretion by
undamaged lima bean increased in response to volatiles from
herbivore-damaged plants (Choh et al., 2006; Kost & Heil,
2006). Even the mere exposure of lima bean to volatiles from
beetle-damaged conspecific shoots increased EFN secretion
and the number of ant visits, and it reduced herbivory rates in
nature (Heil & Silva Bueno, 2007). Plant–plant communication
mediated by VOCs thus appears to be a general phenomenon.

Responding to the neighbours’ damage comes with the risk
of investing in a defence that may not then be needed. Rather
than being directly induced, many plants are therefore primed
by VOCs, at least when these are present at low concentra-
tions. Primed plants do not show detectable expression of
resistance traits, but they respond more strongly once they are
attacked or infected themselves (Zimmerli et al., 2000; Conrath
et al., 2006). Exposing undamaged corn plants to VOCs from
damaged conspecifics primed them to produce JA and terpe-
nes more intensively and/or rapidly in response to caterpillar-
caused damage than plants that were damaged without this
pretreatment (Engelberth et al., 2004), and it made them
more attractive to parasitic C. marginiventris wasps (Ton et al.,
2007). Priming is also involved in the signalling between sage-
brush and tobacco (Kessler et al., 2006), in the response of
EFN to VOCs (Choh & Takabayashi, 2006; Heil & Kost,
2006), and in the induction of direct and indirect defences of
poplar (Frost et al., 2007).

From the very beginning, the idea of a plant–plant com-
munication was heavily discussed and criticized. Why should
plants warn their neighbours (Karban, 2001; Baldwin et al.,
2006)? Plants usually compete with each other, and this type
of communication would benefit the receiver at the cost of
the emitter! How can such a signal evolve? One explanation
would be that VOCs also serve plant-internal functions and,
for instance, mediate signalling among different parts of the
same plant individual, particularly in cases were direct vascu-
lar connections are restricted (Farmer, 2001; Orians, 2005).

In fact, airflow from damaged to undamaged parts appeared
necessary for systemic resistance induction in sagebrush (Karban
et al., 2006). Similarly, VOCs released by damaged lima bean
leaves primed and induced EFN secretion by neighbouring
leaves of the same individual plant (Heil & Silva Bueno,
2007), an observation that was also found for the VOCs
released from poplar saplings (Frost et al., 2007). Volatile
organic compounds can thus serve a hormone-like function,

mediating systemic induction in response to local damage.
Volatile organic compounds identified so far as causing prim-
ing or induction of defence in undamaged plants include
(Z3)-hexenyl acetate (Kost & Heil, 2006) and several struc-
turally related C6-volatiles (Bate & Rothstein, 1998; Engel-
berth et al., 2004; Farag et al., 2005; Ruther & Kleier, 2005),
that is, substances that are released rapidly after damage. Vol-
atile organic compound-mediated within-plant signalling
might thus be faster in eliciting a systemic response than any
signal that is transported in phloem or xylem, and it induces
resistance in exactly those parts where it is most urgently
needed: in the spatially, yet not necessarily anatomically,
neighbouring organs (Heil & Silva Bueno, 2007).

IV. Interactions among different strategies

1. Myrmecophytes

Myrmecophytes are the only known cases of obligate, symbiotic
mutualisms among plants and protecting animals, and they
represent particularly sophisticated examples of plants com-
bining more than one trait in order to optimize their indirect
defence. Tropical plants from more than 100 genera house
specialized ant colonies in domatia and usually provide their
ants with food (Davidson & McKey, 1993). Being completely
dependent on their host plant, the ants exhibit an intensive
defending and cleaning behaviour. Since this comprises
herbivorous insects and their eggs, competing vegetation,
epiphytes and, in some cases, even pathogenic fungi, a highly
effective defence of the host plant results (Heil & McKey,
2003; Rico-Gray & Oliveira 2007). After much discussion
about whether or not the ants really have a protective func-
tion, long-term field experiments on Mesoamerican ‘swollen
thorn’ Acacia myrmecophytes demonstrated beyond doubt
that ant–plants and plant–ants can be engaged in obligate
defensive mutualisms ( Janzen, 1966). Myrmecophytes are
highly successful pioneer trees and now build quantitatively
relevant parts of secondary forests and the vegetation of rud-
eral sites in Southeast Asia, Africa and Meso- and South
America (Davidson & McKey, 1993; Heil & McKey, 2003).

The trait making the interaction between myrmecophyte
and ant an obligate one is usually the formation of domatia.
The majority of ant domatia are caulinary, that is, hollow
stems and shoots (Brouat & McKey, 2001), but ant domatia
may be also localized in hollow thorns ( Janzen, 1966)
(Fig. 1f ), in leaf pouches (Alvarez et al., 2001; Bizerril &
Vieira, 2002; Edwards et al., 2006), in leaf petioles (Risch
et al., 1977; Clarke & Kitching, 1995), and even on fruits
(Kato et al., 2004). Besides nesting space, many obligate
myrmecophytes strengthen the association with specialized
ants by providing them with plant-derived food rewards,
either as EFN or as FBs (Figs 1b,d,e). Owing to the high
contents of lipids and proteins, FBs are being considered
an ‘expensive’ form of defence. Their energy costs have been



Tansley review

© The Author (2007). Journal compilation © New Phytologist (2007) www.newphytologist.org New Phytologist (2008) 178: 41–61

Review 53

estimated to be some 2% of leaf construction costs of
Balsa, Ochroma pyramidale (O’Dowd, 1980), while Macaranga
bancana invests c. 9% of above-ground tissue construction
costs into FB production (Heil et al., 1997).

That FBs are costly is underlined by the limitation of their
production by nutrient supply (Folgarait & Davidson, 1995;
Heil et al., 2001a) or light (Folgarait & Davidson, 1994), and
by the observation that myrmecophytes can reduce FB pro-
duction in the absence of the consuming mutualist (Risch &
Rickson, 1981; Folgarait et al., 1994; Heil et al., 1997). How-
ever, while they are comparably expensive, FBs produced by
obligate myrmecophytes bear important benefits compared
with other indirect defences: FBs are not as obviously pro-
duced according to ‘optimal defence’ requirements as is EFN
involved in facultative interactions. In fact, instead of being
produced on the surfaces of the youngest (defence-requiring)
leaves, FBs of many myrmecophytes are localized in hollow
petioles, at the leaf bases or under recurved stipules (Fig. 1d).
In the case of myrmecophytes, the distribution of ants on the
plant is independent of the distribution of FB production
(Heil et al., 2004a) and may be achieved by VOCs (Agrawal,
1998; Brouat et al., 2000). Evolving an obligate defensive
mutualism in which specialized predators receive a reliable
food source enables the spatial separation of the plant parts
where investment in defence takes place from those where
defence is required, and thus the fulfilment of ‘optimal defence’
requirements without being compromised by ‘growth differ-
entiation’ trade-offs (Heil et al., 1997).

2. Interactions among facultative strategies

Myrmecophytes successfully combine different traits to achieve
an optimum overall indirect defence, but, being obligate
mutualisms, they may not be representative for the more com-
mon, facultative interactions. How good is the evidence for
synergisms among indirect defensive traits that mediate facul-
tative interactions? Unfortunately, the majority of studies
have investigated isolated plant–herbivore–carnivore interac-
tions or the induction of single defence traits. The attack by
more than one enemy at a time has only recently been consid-
ered by researchers, although in nature it is the normal situa-
tion rather than the exception (Turlings & Wäckers, 2004).
Such interactions are increasingly being considered, but the
multiple functions of defence traits and their putative inter-
actions remain virtually unexplored. Only scattered examples
exist illustrating how plants can fine-tune the induction of
direct and indirect defence traits in order to respond specifi-
cally to generalist vs specialist herbivores (Kahl et al., 2000).

Volatile organic compounds serve as volatile hormones or
pheromones, and their composition is affected by the emitter’s
status of attack by herbivores and pathogens. How common
and how specific are such effects; and are there other forms of
interaction among different types of indirect defences, and of
indirect defences with other plant traits? Synergistic effects as

described earlier for myrmecophytes might be used by the
plant to achieve optimal defence strategies when facing different
sets of enemies: for instance, EFN and VOCs share parts of
the same signalling pathway (Fig. 3), and VOCs can induce
EFN secretion. The EFN induced by VOCs can then increase
the time that carnivorous mites spend on the plant, which
were attracted by these very VOCs (Choh et al., 2006). Learn-
ing by parasitoids presents an important factor improving
the synergisms among EFN and VOCs. Learning has been
shown, in particular, for generalist parasitoids (Steidle & van
Loon, 2003) and can turn nonspecialized interactions into
short-term and locally restricted specialized interactions, since
generalist parasitoids that have a positive association of a
specific volatile bouquet with feeding (e.g. on EFN) will pref-
erably choose plants with a similar or identical bouquet as
experienced before. Extrafloral nectar might thus significantly
strengthen VOC-mediated plant–parasitoid interactions.

Similarly, EFN-feeding predators such as ants and mites
can be housed in domatia, and VOCs can help ants to localize
both suitable host plants and the damaged plant parts where
defence is most urgently needed (Fiala & Maschwitz, 1990;
Agrawal, 1998; Jürgens et al., 2006). Plant species having
more than one indirect defence trait are common, and cotton,
for instance, produces VOCs and EFN and bears leaf domatia
(Fig. 1). Arimura et al. (2005) listed 10 species producing
both VOCs and EFN and speculated that a co-occurrence of
these two traits is widespread. Research on VOC-mediated
tritrophic interactions has traditionally been conducted
independently of indirect defence via EFN, FBs or domatia
(Table 1). This situation hardly allowed the discovery of inter-
actions among different traits involved in indirect defence,
which are likely to be common and remain to be identified
and investigated.

V. Outlook

Extrafloral nectar-producing plants are increasingly being discussed
as additional food sources for carnivores in environmentally-
friendly crop protection programmes (Pemberton & Lee, 1996;
van Rijn & Tanigoshi, 1999; Gnanvossou et al., 2005; Mathews
et al., 2007; Olson & Wäckers, 2007). Crops such as cotton
(Limburg & Rosenheim, 2001; Röse et al., 2006), cashew
(Rickson & Rickson, 1998), cassava (Gnanvossou et al.,
2005), Passiflora (Labeyrie et al., 2001), Ricinus (van Rijn &
Tanigoshi, 1999), stone fruits, such as almond, cherry, peach
and plum (Tilman, 1978; Yokoyama & Miller, 1989), and the
majority of legumes bear extrafloral nectaries, which may con-
tribute to the plants’ natural defence against herbivores. An
application in crop protection has always been an obvious and
explicitly expressed goal of research into herbivore-induced
VOCs (Walling, 2001; Degenhardt et al., 2003; Shiojiri et al.,
2006; Turlings & Ton, 2006).

Alas, in spite of some promising attempts in that direction
(Stapel et al., 1997; Gnanvossou et al., 2005), apparently only
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one study has reported that EFN secretion by a crop can
indeed have a defensive effect in the agronomic field (Mathews
et al., 2007). Demonstrations that VOC-mediated tritrophic
interactions can benefit crop plants under realistic agricultural
conditions are similarly scarce, as evidence for VOC-mediated
attraction of predators and resulting plant protection appears
overwhelming but in fact is mainly derived from laboratory
studies (but see Thaler, 1999; Rasmann et al., 2005). Yet,
‘elegant and exciting as laboratory studies are, they cannot
easily address the applicability of herbivore-induced volatile
production to the protection of agricultural crops’ (Hunter,
2002).

Which questions must be answered to understand the evo-
lutionary importance of indirect defences and their potential
relevance in crop protection? Most importantly, the question
as to why VOCs and EFN have evolved as induced traits
instead of being expressed constitutively needs to be answered,
before crop plants transformed for a constitutive release of
VOCs (Schnee et al., 2006) can be regarded as a promising
tool. Volatile organic compounds differ from EFN and FBs in
not being a resource per se, but merely advertising the presence
of prey. Signal reliability is thus an important aspect in this
plant–predator mutualism, which would be highly unstable if
plants would attract carnivores in the absence of herbivores
(Turlings & Ton, 2006). Ecological and physiological costs of
indirect resistance traits need to be quantified and, in fact,
might be a factor severely compromising their application
under certain growing conditions (Heil, 2007). Knowledge
about how the production of VOCs and EFN depends on
abiotic conditions is still in its infancy but will be highly
important in order to understand how these traits can be used
in environmentally-friendly crop protection programmes.

Plant physiology and molecular biology have benefited
from the concentration on selected models such as Arabidop-
sis. Thousands of well defined mutants are available, the
genome is fully sequenced, knowledge of the molecular basis
of signalling cascades has greatly improved, and transgenic
plants have been created that, for instance, release VOCs that
are entirely new biosynthetic products for the whole plant
family. Beyond doubt, this progress would have been impos-
sible without using model species. However, no two single
biological species are functionally identical. Focusing on a few
model species therefore results in a biased picture of how
plants cope with their environment and does not allow an
understanding of the whole spectrum of plant traits, particu-
larly when considering ecological interactions. Common
traits such as EFN remain unexplored only because they are
not expressed by the model species. This problem becomes
even more pertinent when thinking about interactions among
the different defensive traits, as they have now indeed been
found to occur on the genetic, physiological and, in particular,
ecological levels. Volatile organic compounds and EFN inter-
act in many aspects, but these interactions were only recently
made the subject of rigorous experimental investigations.

Their importance for the ecology of plants is still underesti-
mated and thus underrepresented in the current research.

Indirect defences function via interactions among organ-
isms that have evolved sophisticated means of regulation and
communication to achieve an efficient and mutually benefi-
cial cooperation. Scientists working on indirect defence via
tritrophic interactions are best advised to copy their subjects’
strategies and improve communication and cooperation among
those who have thus far studied in isolation single aspects of
a system that needs to be regarded and understood as a whole.
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